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A new chiral oxa[7]heterohelicene 1b was synthesized by
catalytic aerobic-oxidative tandem cyclization of the o-phenyl-
ene-linked bis(2-naphthol) derivative 3 with palladium acetate in
dimethyl sulfoxide. Optical resolution of 1b was possible on
chiral HPLC, but it was found stereochemically rather unstable
at ambient temperature. Kinetic analysis and DFT calculation for
the dynamics of racemization of 1b were also disclosed.

Because of their unique helical structures and chirality,
helicenes are fascinating targets in organic synthesis.1 Since
the pioneering work by Newman et al. on the preparation of
[6]helicene in an optically pure form,2 synthetic studies on chiral
helicenes have been accelerated.3 Besides typical carbohelicenes
composed of an all-carbon ring framework, heterohelicenes
incorporating one or more heteroaromatic units in the skeleton
have also gained increasing attention.1a1d,4 Stereochemically
defined thiophene-containing helical ring systems are prime
examples.5 In contrast to this, the furan-alternatives have been
rarely focused on.6,7 That would be partially because oxa-
heterohelicenes are supposed to be stereochemically less stable
resulting from small overlapping at the helix termini.6c,6d,8

Moreover, it seems to pose another issue that synthetic methods
to embed furan into a helicene framework have not been well
elaborated. These points have inspired us to devise a novel
synthetic approach to chiral furan-containing heterohelicenes. To
begin with, we were intrigued by the fact that the thia[7]hetero-
helicene 2a6c,6d,8 holds a robust helicity, though the oxa[7]-
heterohelicene 1a is unknown (Figure 1). Thus, we launched
studies on the synthesis of 1b, an analog of 1a, to gain some
insight into the molecular design on optically active furan-
containing oxa-heterohelicenes as reliable chiral platforms.

o-Alkynylphenols are known to undergo palladium(II)-
catalyzed annulation to give 3-benzofuranylpalladium(II) inter-
mediates, which serve for further CC coupling reactions in a
tandem fashion.9 Thus, we envisioned that the phenylenediyne-
linked bis(2-naphthol) 3 would be submitted to the serial CO
and CC bond formation under Wacker-type oxidation condi-
tions, leading to 1b (Scheme 1). The precursor 3 should be
accessible by assembling 2-naphthol, o-phenylene, and acetylene
segments through conventional Sonogashira coupling reactions.
Herein we report on the synthesis of a new oxa-heterohelicene 1b
and the evaluation of its stereochemical stability.

The target oxa-heterohelicene 1b was synthesized as shown
in Scheme 2. Regioselective iodination of 2-naphthol at C1
position10 and the subsequent acetylation of the hydroxy group

gave 4. The iodinated compound 4 underwent the Sonogashira
coupling reaction with trimethylsilylacetylene followed by the
desilylation with tetrabutylammonium fluoride to obtain 5. The
alkyne 5 was subjected to the double Sonogashira coupling with
o-diiodobenzene to give 6. Although deacetylation of 6 under
the conventional conditions with K2CO3 in methanol triggered
undesired nonoxidative cyclization into a naphthofuran deriva-
tive (see the Supporting Information24),9e,11 the desired 3 was
obtained by the treatment of 6 with aqueous hydrazine in
acetonitrile.12 Finally, aerobic-oxidative tandem cyclization
worked on 3 under catalysis with Pd(OAc)2 in DMSO13 at
room temperature to provide 1b in good yield.

The molecular structure of 1b was determined by X-ray
crystallography to prove the helicity induced in solid state
(Figure 2).14 Moreover, the 1HNMR spectrum of 1b in CDCl3
indicates a significant upfield shift (7.10 ppm) of an aromatic
proton located in the mutually overlapping naphthalene rings
as compared to the corresponding chemical shift (in a range
of 7.467.61 ppm) for planar naphtho[2,1-b]furan.15 This also
supports a helical form of 1b in solution. However, we noted
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Figure 1. Oxa- and thia[7]heterohelicenes of interest.
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Scheme 1. Synthetic strategy for 1b.
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that 1b was not as overcrowded at the helical ends as structurally
defined analogous thia-heterohelicenes.16,17

We next performed optical resolution of 1b by chiral HPLC
to obtain one enantiomer in ca. 70% ee.18,19 However, the
enantioenriched 1b thus obtained was proven to racemize at
room temperature. Thus, we turned to kinetic analysis on the
racemization and measured variation of the enantiomeric excess
of 1b with time at different temperatures (0, 10, 20, and 25 °C).18

Plot of ln(% ee) vs. time showed a good linear relationship at
each temperature (Figure 3a), permitting to calculate the rate
constant for racemization: k (s¹1) = 5.83 © 10¹6 (0 °C), 2.31 ©
10¹5 (10 °C), 9.39 © 10¹5 (20 °C), and 1.78 © 10¹4 (25 °C).20

From the Arrhenius plot with these kinetic data (Figure 3b), we
determined the activation energy for racemization of 1b to be
22.2 kcalmol¹1.

We also evaluated the dynamics of racemization of 1b by
DFT calculation (Figure 4a).21 The transition state structure TSO
was found to be 22.5 kcalmol¹1 higher in energy than the global
minimum structure GMO in good agreement with the above-
mentioned kinetic analysis. Interestingly, much higher activation
energy (35.4 kcalmol¹1) ensued by the same calculation for the
thiophene-based analog 2b (Figure 4b), which was consistent
with the stereochemical stability of 2a6c,6d and its deriva-
tives.16,22 The deeper winding structure of 2b originates from a
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Scheme 2. Synthesis of 1b.

Figure 2. An ORTEP diagram for the X-ray structure of 1b
with 30% ellipsoids. Hydrogen atoms have been omitted for
clarity.
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Figure 3. Kinetic plots for the racemization of 1b: (a) ln(% ee
of 1b) vs. time/h, (b) Arrhenius plot; ln(k/2) vs. T¹1/10¹3 K¹1,
where k stands for rate constant with a unit of s¹1.
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small inner angle of ¾CSC (ca. 91°) as well as an elongated
CS bond in the thiophene ring units (ca. 1.75¡). In contrast,
the corresponding ¾COC angle (ca. 105°) is significantly
larger and the CO bond (ca. 1.37¡) is much shorter for the
furan ring moieties in 1b, leading to the observed small
overcrowding at the helix termini and less stereochemical
stability.8,23

In summary, we constructed a unique oxa-heterohelicene 1b
by assembling 2-naphthol, o-phenylene, and acetylene segments
through serial Sonogashira-coupling and palladium(II)-catalyzed
aerobic oxidative tandem cyclization as key steps. The dynamics
of racemization of 1b was also investigated by the kinetic
analysis and DFT calculation. Based on the present study, design
and asymmetric synthesis of stereochemically robust furan-
containing heterohelicenes are underway in our laboratory.

A part of this work was performed under the Cooperative
Research Program of the “Network Joint Research Center for
Materials and Devices (IMCE, Kyushu University). We thank
Professor Hidetoshi Yamada of Kwansei Gakuin University for
helpful discussion.
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